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An initially two-dimensional turbulent boundary layer was subjected simultaneously to a 
transverse shear, imposed by a moving wall, and a strong streamwise acceleration, and 
the joint effects were studied computationally by applying a second-moment closure 
model with new low Re number and wall proximity modifications. The model was 
previously verified in the computation of several two-dimensional thin shear flows, 
including the cases in which each of the two considered external effects were present 
separately. The comparison with the available, though modest, experimental results shows 
good agreement. The computations show a dominant effect of the imposed transverse 
shear manifested in a large turbulence production in the initial region of the 
three-dimensional boundary layer, but the strong acceleration subsequently becomes 
dominant over the flow and damps the turbulence, leading to eventual relaminarization. 
The dynamics of the turbulence response, which is strongly dependent on the relation 
between the magnitudes of the two counteracting effects, was well reproduced by the 
applied model. 
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I n t r o d u c t i o n  

It is generally believed that any bulk three-dimensionality 
imposed on initially two-dimensional (2-D) turbulent flows 
enhances instability and generation of turbulence. Yet in some 
cases, the experiments as well as direct numerical simulation 
indicate a reduction of all turbulent stress components. Such 
are initially 2-D turbulent boundary layers subjected to 
skewing or otherwise imposed transverse pressure gradients. It 
was found that all stress components decrease, but the shear 
stress decreases faster than the normal stresses, leading to a 
reduction of the turbulence structure parameter, I~l/k, (G-shear 
stress vector in xz-plane) (e.g., Bradshaw and Pontikos 1985, 
Sendstad and Moin 1991). The effect is opposite if the 
three-dimensionality is induced by an imposed transverse 
shear, generated, for example, by a moving wall bounding the 
flow. Here, the generated turbulence energy is also fed into the 
spanwise components as compared with only the streamwise 
component in a 2-D boundary layer. If such a flow is also 
subjected to a streamwise pressure gradient, as often found in 
turbomachinery, the combined effects of imposed shear and 
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flow skewing may result in a very different level and structure 
of turbulence in comparison with a 2-D situation. 

A case in point is a shear-driven, three-dimensional (3-D) 
turbulent boundary layer subjected to a high acceleration. Such 
flows are encountered in some industrial applications where the 
flow acceleration is caused by the fluid expansion (as in turbine 
blade passages) or the negative pressure gradient is 
intentionally imposed to suppress turbulence and even to 
promote the flow laminarization. The two externally imposed 
extra strain rates--the transverse shear (longitudinal vorticity) 
and the favorable pressure gradient (longitudinal linear 
straining)--act in an opposing manner. The first enhances 
turbulence generation in the wall vicinity, whereas the second 
acts toward damping turbulent fluctuations. Which of these 
will prevail depends, of course, on their relative intensities. The 
outcome can be a maintaining turbulent flow or turbulence 
may die out and the flow will laminarize. Most of the 
mentioned industrial applications are associated with heat 
transfer, and its control--enhancement or suppression---can be 
achieved by optimization of the relation between the imposed 
shear and acceleration rates. 

Another interesting feature of the considered flow, also 
pertinent to flows in which only one of the considered effects 
is present, is turbulence dynamics and its response to step 
changes, as well as to any rapid variation of the mean rate of 
strain. Different turbulence interactions are known to respond 
at different rates to the imposition of new conditions. A 
satisfactory prediction of the variation of turbulence properties 
on the imposed, new, external effects is a useful test of the 
modeling hypotheses of various terms in the transport 
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equations, but also a crucial prerequisite for a trustworthy 
application of the model in complex and nonequilibrium 
industrial flows. 

The separate effects of shear-imposed three-dimensionality 
and severe acceleration have been investigated in the past. 
Two-dimensional, accelerating turbulent boundary layers have 
been studied by Launder (1964), Patel and Head (1968), Jones 
and Launder (1972) and others. Spalart (1986) performed direct 
numerical simulation (DNS) of self-similar sink flow boundary 
layers and produced valuable details of turbulence properties. 
To the writers' awareness, the only work that considered 
acceleration in combination with other effects is the recent 
work of Launder and Loizou (1992), who investigated 
experimentally the laminarization of 3-D boundary layers in a 
curved, rectangular-sectioned duct with a progressively 
decreasing cross-sectional area. 

Various types of 3-D turbulent boundary layers have also 
been reported; a collection of experimental and numerical 
results can be found in the proceedings by van den Berg et al. 
(1988). Three-dimensionality created by shear was investigated 
experimentally by Bissonnette and Mellor (1974), Lohmann 
(1976) and Fulachier et al. (1982)--all on a cylinder with a 
stationary front and a rotating aft section. The considered 
plane, shear-driven, 3-D turbulent boundary layer subjected to 
acceleration is currently investigated experimentally by Aust et 
al. (1992) and we have used some of their results for model 
validation. 

The present paper considers a plane, initially 2-D turbulent 
boundary layer on a fiat plate that encounters a transverse 
motion of the bounding wall, imposing a sudden shear force. 
Starting from the same or other locations, the flow is also 

Figure I Schematic of the considered flow 

subjected to a severe acceleration created by the opposite wall 
converging with the bottom plate in the mean flow direction. A 
schematic of the flow situation considered is given in Figure 1. 

The flow has a continuous supply of energy from the moving 
wall through the work of shear force and, in the absence of 
other external effects, the eddy structure can be expected to 
adjust soon to a new, close-to-self-similar situation. A favorable 
streamwise pressure gradient will impose a continuous 
stretching of vortex filament in the streamwise direction, 
causing a gradual but continuous adjustment of turbulence 
structure and eventual relaminarization if the energy input is 
insufficient. Such an event may cause drastic consequences (e.g., 
a sudden decrease of the heat transfer at the bounding wall). 

Notation 
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Turbulence structure parameter, 
x / ~  2 + ~-~2/2k 
Anisotropy of the turbulent stress tensor, 
aij = u.-ff-~/k - 2/36 u 
Flatness of the stress anisotropy, 
A = l - 9 / 8 ( A  2 - A 3 )  
Stress anisotropy second invariant, 
A 2 = a i j a j i  
Stress anisotropy third invariant, 
A 3 = aijalkaki 
Empirical coefficient 
Wall friction factor, C:  = 2rw/Q 2 
Anisotropy of the dissipation rate tensor, 
eij = e,q/e -- 2/36ij  
Flatness of the dissipation rate anisotropy, 
E =  1- -9 /8(E 2 - E a )  
Second invariant of the dissipation rate 
anisotropy, E 2 = eijeji 
Third invariant of the dissipation rate 
anisotropy, E 3 = eijejkeki 
Empirical damping function 
Boundary-layer shape parameter 
Intensity of the mean velocity vector, 
O = , , / u  2 + (ww - w)  2 
Kinetic energy of turbulence, 
k = 0.5(u --~ + v -'7 + w -'z) 
Acceleration parameter for 2-D flows, 
K = v/U~(dUJdx) 
Acceleration parameter for 3-D flows, 
K *  = v /Q2(dQJdx )  
Unit vector normal to the wall, np(0, 1, 0) 

P 
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U, V, W, (Ui) 
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Static pressure 
Production of turbulent stresses (P~ --- 0.5Pii) 
Turbulence Reynolds number, Ret = kZ/(w) 
Mean velocity components in x, y and z 
directions respectively 
Free stream mean velocity 
Wall friction velocity 
Moving wall velocity 
Components of velocity fluctuation in x, y 
and z directions respectively 
Streamwise, normal-to-wall and spanwise 
coordinates 
Referent position along the flow 

Greek symbols  

A 

~Uk 

V 

Angle between the wall shear stress vector 
and free stream mean velocity 
Boundary-layer thickness 
Reference boundary-layer thickness 
(A = 0.0254m) 
Third-rank unit tensor 
Stress dissipation rate tensor 
Kinematic viscosity 
Pressure-strain term in the equation for 
Reynolds stresses 

Subscr ip ts  and  superscripts  

e Free stream 
n Direction normal to the wall 
w Wall 

Root mean square (rms) values 
+ normalized with inner wall scales (U,, v) 
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In other cases, the relaminarization in some parts of the flow 
may be just desirable to prevent negative effects of high 
turbulence on the quality of an industrial process or product 
(like in the case of film coating on a solid surface) while still 
ensuring a sufficient transport of heat and m a s s  at the wall and 
in the adjacent thin fluid layer. Defining a suitable criterion for 
the onset of laminarization is, therefore, of significant 
theoretical and industrial relevance. 

For  2-D accelerating boundary layers, the most common 
criterion for laminarization is the acceleration parameter 
K = v/UZ(dUe/dx) (see Notations). Alternatively, the non- 
dimensional pressure gradient p+ = -v/(pU~)(dp/dx) can be 
used. The critical value of K at which a turbulent boundary 
layer reverts to laminar was experimentally found to be 
between 2.8 and 3.2 x 10 -6. The DNS of Spalart (1986) gave a 
more precise specification of the critical K, which seems to be 
closer to the lower experimental limit. The corresponding range 
of critical p+ is between 0.021 and 0.024. 

These criteria lose their meaning in a shear-driven 3-D flow, 
since the enhancement of the turbulence level due to the 
transverse wall movement, which delays the reverse transition, 
depends strongly on the wall velocity Ww. In fact, it is expected 
that the critical value of K will increase with an increase in Ww. 
Perhaps the more appropriate criterion is A, + = v/(pU3)dz/dy 
suggested by Patel and Head (1968), but this parameter is 
impractical because it employs the local gradient of the total 
shear stress. Alternatively, the transverse wall movement can 
also be accounted for by replacing the streamwise velocity Ue 
in K by the vector sum of the free stream and wall velocity (i.e., 
K * =  v/Q2(dQJdx) where Q ~ = x ~ 2 +  w~. At a high 
acceleration, K* will gradually approach the value of K in 
an analogous 2-D flow, since the effect of Ww will gradually fade 
with a rapid increase in U~ along the flow. Although numerical 
modeling may, in principle, be employed to establish a form of 
characteristic laminarization criterion for any geometry, we 
have restricted ourselves, at present, to the computation of the 
flow considered at specific conditions defined by the prescribed 
K and W~. The aim of the work was to test and to demonstrate 
the predictive ability of the same turbulence model (which 
proved successful in predicting several simpler 2-D and 3-D 
flows) in a new situation, in which two or more extra strains 
are present simultaneously. Of particular relevance to the 
geometry considered here are the model verifications in 2-D, 
strongly accelerating boundary layers and in constant pressure, 
shear-driven 3-D turbulent boundary layers, which, as will be 
shown later, showed a very good agreement with the available 
experiments. One may argue that an extrapolation of a 
turbulence model to a new situation, in which the model was 
not tested before, may not lead to trustworthy conclusions. 
Indeed, because of the nonlinear character of stress-strain 
interactions, even a successful verification of the model in 
situations where various extra strain rates are isolated gives no 
guarantee that the model will perform well if different effects 
are present simultaneously. Yet, a trustworthy extrapolation to 
an unknown situation, in which various effects may appear in 
different combinations, is the major prerequisite to turbulence 
models, if they are expected to serve as predictive tools. 

The results presented here may serve as a proof-- though 
only partial due to limited availability of experimental da ta - -o f  
model applicability to the computations of a flow exposed 
simultaneously to two types of extra strains, the transverse 
shear and streamwise strain, even if both extra strain rates are 
very high. 

G o v e r n i n g  e q u a t i o n s  and  t u r b u l e n c e  m o d e l  

The considered flow has a character of a 3-D boundary layer 
that  can be described by the mean momentum equation for the 
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streamwise and spanwise coordinate direction (for notation see 
Figure 1). 

p v ~ + v  = - - - + - -  ~, - p ~  
03,,/ Ox Ox 7 x  

+~yy .u ~ y  - pIi'~ (1) 

O (  OW pwo ) (2) 

Note that there are no changes in the spanwise direction 
(0/0z = 0), hut the changes in the streamwise direction are 
induced both by the acceleration and by the transverse shear. 
Also, all three components of the shear stress play an important 
role. The lateral mean velocity component V was evaluated 
from the continuity equation. 

The closure of the mean momentum equations was achieved 
by means of a second-moment model that implies the solving 
of the transport equations for turbulent stresses and for the 
energy dissipation rate. The presence of extra strain rates 
generally invalidates the universal law of the wall, so that the 
use of the conventional wall functions becomes inapplicable. 
This is particularly the case when a strong acceleration is 
imposed that progressively thickens the viscous sublayer and 
may lead to laminarization. For such cases, but also for most 
other complex turbulent flows, the essential feature of a reliable 
model is its ability to account for the low Re number and wall 
proximity effects in a general manner, which will allow the 
integration of the governing equations up to the wall, 
irrespective of its shape, with the use of exact wall boundary 
conditions. For  that reason, we consider the turbulence 
transport equations in a general form as follows: 

v + C, - ~ku~ - u'fi-~ - -  + uju~ 
Dt t3x k e Ox t J c~x k t3Xk,] 

+ ~U -- ~U (3) 

De 0 [ (  k _ _ ' ~  08-] 8 OU i 8g 
- - = - -  v + C~ - UkU~] ~ - l  -- C,, u~u~ 

k _ _  OzU i 02Ui OU~ OUt 
+ C,3v - uju k - -  + C,,f,,k - -  - -  eu, el,. , 

e c3xjt~x t OXkC~X~ Oxj ax,~ 
(4) 

For the dissipation equation, we have adopted the form 
(equation 4) of Hanjali6 and Launder (1976), which already 
contains all necessary modifications and has been verified in 
several types of flows within the framework of second-moment 
closures. Equation 4 was extended by the addition of the term 
suggested by Hanjali6 and Launder (1980), the last term in 
Equation 4, which enhances the effect of irrotational strain. In 
the considered flow, OUJOz = 0, so that the term can be 
reduced, for convenience, to the same form as in 2-D flows, 
C~,(v -7 -u-Z)(OU/Ox)e/k, which now separates the contribution 
of the shear strain from the irrotational one.* This term, found 
also to improve predictions of flows with strong adverse 
pressure gradients, proved beneficial in computing the sink 
flows at higher K and in predicting laminarization at 
appropriate conditions. 

*The application of this term in the original invariant form, as given 
in Equation 4, in low Re number flow regions, requires a damping 
function f4 in order to satisfy the conditions very close to the wall. With 
the modified form, as used here, there is no need to introduce f4. 
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The recent appearance of direct numerical simulation (e.g., 
Kim et al. 1987) showed that Equation 4 does not reproduce 
a proper behavior of e very close to the wall. However, since 

is of no practical relevance per se, except to serve for 
computing of the turbulence scale and of the components of 
stress-dissipation e~j, this defect is usually compensated by 
adequate modeling of the other terms in the u~u~ equation, 
above all of ~iy, eu and, to some extent, of turbulent transport. 
The modeling of these terms is still the major task in designing 
general, second-moment closure models. Over the past few 
years, the search for adequate models of the pressure-strain and 
dissipation terms has been intensified and a number of new 
proposals (in conjunction with both the high and low Re 
number models) have been recently published. The flow 
considered in the present paper is geometrically simple and one 
may be tempted to apply the most complex forms of models 
available in literature that are tailored to satisfy exactly the 
important mathematical constraints and are expected to mimic 
physics more appropriately than the simpler models. However, 
the complex models are still insufficiently tested and often pose 
numerical difficulties when applied to geometrically more 
complex flows. In view of possible application of the model 
considered here to more general 3-D cases, we have adopted 
an approach that is based on relatively simple but widely 
verified standard high-Re-number, second-moment closure and 
concentrated on modifications of the models of ~ j  and e~, 
which would allow both the integration up to the wall in 
various types of wall flows and adequately account for low Re 
number effects on the bulk flow. The rationale of the adopted 
models of the major terms in Equations 3 and 4 is briefly 
outlined. 

The modeling of the turbulent transport has been usually 
regarded as relatively unimportant in simple equilibrium wall 
flows, where its role is overshadowed by the source terms. 
Besides, the simple gradient form usually gives a right 
qualitative representation. In 3-D flows, this may not be true, 
since the turbulent transport has no preferential direction and 
cross-diffusion terms become important, so that the use of a 
general coordinate-frame-invariant form is more appropriate. 
Yet, Schwarz and Bradshaw (1993) recently showed that the 
noninvariant "generalized" gradient expression performed in a 
pressure-skewed 3-D boundary layer on the flat floor of a duct 
with a 30 ° bend almost equally erratic as the more elaborate 
and tensorially invariant models, reproducing some compo- 
nents remarkably well and some erroneously. However, as in 
2-D wall flows, the participation of the turbulent transport 
terms in the total stress budget remains relatively small even 
in the 3-D boundary layer considered. Anticipating that the 
same conclusion applies in the flows considered here, we 
adopted this simple model, as written in Equations 3 and 4. 

For the pressure strain terms, we adopted also the simplest 
linear models for both the slow and rapid parts, ~j.~ and ~y.2- 
To be fully consistent with this approach, we have also retained 
the standard wall reflection terms ~w and ~ w  ~ of Gibson and 

t j , l  U , z  

Launder (1978). A justification for this may be found in the 
report of Schwarz and Bradshaw (1993), who tested several 
linear and nonlinear models of ¢~i in the 3-D boundary 
layer-- though only in the fully turbulent flow outside the 
viscosity-affected region. They found that most of the tested 
models performed remarkably well and concluded that in fairly 
simple 3-D flows, the nonlinear forms have no noticeable 
advantage. 

Viscosity effects and wall damping within the viscous sub- 
layer have been modeled in the past by introducing damping 
functions in terms of nondimensional wall distance y+ or 
Re + = k l /2y /v ,  turbulence Re number Re, = k2/ve and, more 
recently, the eddy flatness parameter A = 1 -  9/8(A 2 - A 3 ) .  
The last two parameters are invariant to coordinate 

transformation and reduce to zero at the wall, also satisfying 
thus far the turbulence two-component limit. Besides, A 
approaches the value of 1 if the turbulence approaches the 
isotropic conditions, so this parameter can be conveniently 
employed to model the effects of turbulence anisotropy on 
various interactions. Among a number of modifications 
proposed over the past few years, the models of Launder and 
Shima (1989) and Launder and Tselepidakis (1993) seem to be 
the most general, since they employ only the invariant variables 
to define the damping functions. The first model contains a 
great degree of empiricism implemented in several functions 
that were tuned to satisfy a broader range of boundary layer 
flows. Shima (1991) reported a reasonable overall agreement 
with experiments and DNS results for several types of 
boundary-layer flows with basically the same linear model for 
~ j ,  though in some cases slight readjustments of the coefficient 
were necessary. However, apparently his model produced 
laminarization of a sink flow at a much smaller K than the 
commonly adopted critical value. Launder and Tselepidakis 
substantiate the arguments for various modeling details by 
more exact reasoning, albeit recognizing severe limitations of 
the conventional one-point closure approach, which came to 
the surface especially in the near-wall region. They performed 
a fine tuning of their nonlinear model in the plane channel flow 
at two Re numbers to reproduce turbulent stresses in very good 
agreement with DNS data, though the stress balances still 
departed considerably. They did not report on the performance 
of the model in other situations, but the high numerical 
sensitivity of the model (discussed in a private communication) 
gives not much prospect for its wider application in more 
complex flows. 

The present model is an outcome of our endeavor to arrive 
at a model that should satisfy basic physical constraints, even 
though this may be achieved by introducing empirical 
functions. However, we insisted on the approach in which the 
necessary modifications are achieved in terms of invariant 
turbulence parameters. This option, as compared with more 
general ones in which the satisfaction of various mathematical 
constraints is achieved by the forms of modeled expressions 
themselves, without additional empirical functions, seems to 
give a higher degree of sturdiness, which should make the 
application of the model in more complex turbulent flows 
easier. This argument may sound unconvincing, but one should 
recall that most general models have been derived merely by 
imposing kinematic (tensorial properties) constraints without 
much concern over the actual physics that the terms represent. 
With the adopted linear models for the parts of the 
pressure-strain term, we follow to some extent the approach 
taken by Launder and Shima (1989) insofar as to define the 
coefficients in ~ j  in terms of Re, and A with several small 
novelties, which were partly necessitated by our form of 
equation, differing substantially from the equation of Launder 
and Shima. A major novelty is the inclusion of the flatness 
parameter of the dissipative eddies E defined in analogy with 
the flatness of the stress anisotropy A. These modifications, 
together with those in the expression for the dissipation rate 
tensor e~ ensured that all terms in the modeled equation satisfy 
the asymptotic and limiting turbulence states in the case of 
infinite and vanishing Re, or close to a solid wall where the 
turbulence approaches a two-component limit. The adopted 
forms of the model of the pressure-strain terms are summarized 
as  

¢Piy,1 = -- C ,  eaiy (5) 

~Pij,2 = - -  C 2 ( P i j  - -  2 P k ~ i j )  (6) 
g 

~ , ~  = C 7  ~ ~ n k n m 6 ~ j  --  au- -~nkn  j --  ~ k U j n k n l ) f ~  (7) 

¢Pi~,2 = C~(Okm,Enkn, .6q --  ~Oik,2nkny a --  ~Ok j ,2nkn i ) f  w (8) 
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w h e r e  the coefficients have been defined as 

C 1 = C + A1/2E 2, C = 2 . 5 A F I / 4 f ,  F = min(A 2 0.6) 

l("e,Y 11 
f = min | \ 1 5 0 J  , / 

C z = 0.75At/2; C~' = 1 - 0.7C; C~' = min(A, 0.3) 

[- k3/~ 1.Ol 
f~ = min L 2 . ~ s x ,  

and 

A = 1 - 9(A z - A3) A 2 = aqaji A3 = aoajkau 

utuj 2 

aij k 3 

E = 1 - 9(E z - E3) E z = %eii  E 3 = eqejkeki 

e~j 2 
eij . . . . .  ~ij 

3 

The dissipation rate tensor e u was expressed in the form 
proposed by Hanjali~ and Jakirli~ (1993). 

eij = Le~ + (1 - f , ) } f i , . :  (9) 

• ~ [um, u~ + (u--~njnk + u~ukn, nk + uku~n~nzn, n~)fd] (10) 
% = k [ 3 u,,uq \ 

1 + ~  k n p n j d )  

where 

f~ = 1 - -  N/fAE 2 fa = (1 -I- O.1Re,)- ' n,(O, 1, 0) 

The model employs the Re number function fa to damp the 
wall correction and prevents its prolonged effect outside the 
viscous region. The new function f, is expressed in terms of the 
flatness parameter of the dissipative scales E. The use of E to 
define the switch over from the isotropic to nonisotropic 
dissipation (when the wall approaches) was inspired by the 
DNS data, which indicate a much higher degree of anisotropy 
in eo in a plane channel--at  least at the two considered Re 
numbers, 5600 and 14000--than hitherto anticipated. In fact, 
DNS data show that the anisotropic form eq = eu~uj/k is a good 
approximation for all three normal components up to y+ ~ 60. 
This behavior cannot be simulated either in terms of Re, or A. 
For  the considered bulk Re numbers, Re t departs already at 
y+ = 10, whereas A remains more or less uninfluenced by the 
bulk Re number and would produce a similar degree of 
anisotropy even at very high Re numbers, where the dissipation 
anisotropy remains confined to the narrow, near-wall region. 
The parameter E seems to respond adequately to the bulk Re 
number influence. 

The coefficients in the e equation take the following values: 
C, = 0.18, C,t = 1.44, C~2 = 1.92, C,a = 0.35, and C~4 = 3.0. 
The last two coefficients have been slightly modified in 
comparison with the originally proposed values in conjunction 
with the applied model of the stress equation, after the testing 
was performed over a broad range of test cases, to achieve the 
best overall agreement in a number of low Re number flows. 
The only empirical function in the e equation is f,  = 
1 -- (C~2 - 1.4)/C,2{ex p [-(Red6)2)}, introduced by Hanjali~ 
and Launder (1976) to ensure a switch from the initial to the 
final period of decay of isotropic turbulence at the appropriate 
turbulence Re number. 

N u m e r i c a l  m e t h o d  

Computations were performed by a finite-volume Navier- 
Stokes numerical solver for 2-D flows in an orthogonal 
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coordinate system with collocated variable arrangement. The 
code was modified by selective interpolation of the transport 
equations for the turbulent stresses instead of interpolating 
stresses themselves at the control cell boundaries, which 
improved the convergence. For  the flows considered here, the 
code was parabolized in so far that the pressure gradient was 
specified explicitly and the V component of the mean velocity 
calculated from the continuity equation. Apart from these 
approximations, the method retains all the features of a general 
code and accounts for the streamwise gradients of all variables. 
Some preliminary tests performed by applying the full (elliptic) 
form of the equations gave almost identical results for the 2-D 
boundary layer and sink flows, apart from the initial 
adjustment region of the solution domain. The typical number 
of grid points across the flow was about 100, clustered in the 
region close to the wall so that at least 80 points were placed 
within the boundary layer and, of these, at least 30 were within 
the viscosity-affected zone. The nearest point close to the wall 
was typically at y+ ,~ 0.1 - 0.2. The solutions were obtained 
by marching downstream and solving the equations at each 
streamwise position by the iterative lower-upper (ILU) method 
after Stone. A typical size of the forward step was 2-5 percent 
of the boundary layer thickness. 

R e s u l t s  and  d i s c u s s i o n  

The applied model was tested in a range of thin shear flows at 
low and high Re numbers, including a plane channel, wall 
boundary layers at constant and variable pressure, sink flows 
at several acceleration parameters (including the case with 
laminarization) and in a 3-D boundary layer on a rotating 
cylinder. For illustration we shall first present some results for 
simpler flows in which only one of the considered effects--the 
acceleration or shear-induced three-dimensionality--were 
present. 

T w o - d i m e n s i o n a l  s i n k  f l o w s  

Spalart (1986) provided direct numerical simulation for three 
values of the acceleration parameter K. We will p r e s e n t  h e r e  

some results only for his highest value, K = 2.75 x 10 -6, which 
is close to the critical one at which the reverse transition occurs. 
For this value of K, Spalart still obtained a self-similar, fully 
turbulent solution with a small but persistent turbulence level. 
Also, some results will be presented for K = 3.2 x 10 -6, which 
has been regarded as sufficiently high to cause flow 
laminarization irrespective of the initial turbulence level. 
Figures 2 4  show a comparison between our computations and 
DNS results for the mean velocity profile and components of 
turbulent stresses, showing a very good agreement, particularly 
close to the wall. For  the lower values of K, the agreement is 
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equally good. As can be seen in Figure 3, the maximum 
turbulent shear stress is less than half of the wall shear stress 
and occurs at y ÷ ,~ 30. The shape of the profiles of the normal 
stresses resembles those in a constant-pressure boundary layer 
or channel flow at corresponding Reynolds numbers, but with 
an obvious reduction of all three components, particularly in 
the outer flow region. It is also noticeable that the damping 
due to acceleration affects the spanwise component ~+ the 
most and the streamwise component g+ the least, increasing 
the stress anisotropy in the near-wall region as compared with 
a constant-pressure boundary layer. 

An important test for turbulence models is the ability to 
predict proper asymptotic behavior of all turbulence properties 
as the wall is approached. Because the fluctuations normal to 
the wall die out faster than those in the plane parallel to the 
wall, the turbulence approaches the two-component limit. 
Figure 4 shows the log-log plot of all stress components in the 
near-wall region, with an indication of limiting theoretical 
slopes. A very good agreement between the DNS results and 
present computations, achieved in both, the magnitudes and 
slopes of the predicted stress components, apart from ~÷, can 
serve as a proof that the model reproduces the asymptotic, 
near-wall behavior and satisfies the two-component limit. The 
disagreement in ~+ probably originates from the deficiency of 
the simple model of the pressure-strain term, but does not much 
affect the other flow parameters, at least in 2-D situations. 

In order to illustrate the model performance in the limit of 
vanishing Re t and in predicting the laminarization, we present 
in Figure 5 the evolution of the friction factor C I and the shape 
parameter H along the flow for K = 2.75 x 10 -6 and for 
K = 3.2 x 10 -6. Both solutions were obtained by starting from 
the DNS data for the smaller K. In both cases there is an 
adjustment length indicating incompatibility of the modeled 
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Figure 4 B l o w u p  of  tu rbu lence intensi t ies and shear stress in the 
near -wa l l  reg ion in a 2 - D  s ink f l o w  

equations and initial profiles from the DNS data, especially of 
dissipation ~. The DNS produced a considerably higher 
dissipation rate very close to the wall than obtained by the 
model, so that the turbulent stresses, as well as the wall shear 
stress, decrease sharply in the initial part of the adjustment 
length. A full recovery is achieved after the new profiles, which 
satisfy the modeled equations, are obtained. For K = 2.75 
x 10 -6, the solution eventually yields the self-similar values 
very close to the DNS results. Whereas for K = 3.2 x 10 -6, 
the turbulence shows a steady decay and the flow laminarizes 
as indicated by the typical laminar values of both the friction 
factor C s and of the shape parameter H at the end of the 
solution domain. 

Of course, a more severe test of the model would be to check 
its ability to reproduce the dynamics of the turbulence decay 
and laminarization for various initial conditions. Un- 
fortunately, this was not possible because of lack of data for 
comparison. However, a good test of the dynamics of the 
response of the turbulence model on the external perturbation 
is an oscillating flow, particularly at a transitional Re number 
in which forward and reverse laminar-to-turbulent transitions 
occur within a single cycle, independently of the initial 
conditions. Such a test, reported by Hanjali6 et al. (1993) proved 
that the same model performed well, reproducing the dynamics 
of turbulence transition close to a wall in a close agreement 
with the results of the DNS. 

T h r e e - d i m e n s i o n a l  b o u n d a r y  l a y e r  o n  a r o t a t i n g  
cylinder 
The next case considered is the initially 2-D turbulent boundary 
layer along a stationary cylinder that is three-dimensionalized 
by encountering the rotating cylinder afterbody. We con- 
sidered, in parallel, two sets of experimental data, those of 
Bissonnette and Mellor (1974) and of Lohmann (1976). Both 
experiments are very similar. In Lohmann's flow, the ratio of 
the transverse wall velocity to the fluid free stream velocity was 
Ww/U+ = 1.41, whereas Bissonnette and Mellor considered two 
cases, W,,/Ue = 0.93 and 1.8, but published the results mainly 
for the first case, presumably as they were more reliable. 
Because both sets of data seem to suffer from some inaccuracies, 
particularly the measurements of turbulent stresses close to the 
wall, we will present a selected comparison of our computations 
with results for both flows. 

The same cases were reasonably well reproduced by Gibson 
and Younis (1986) with a high Re number, second-moment 
closure (though with different coefficients in the model of ~u, 
C1 = 3.0 and C2 = 0.3) and wall functions based on the 
resultant velocity and wall shear stress vectors. The evidence 
of the existence of a constant-stress layer close to the wall where 
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the shear stress and mean velocity vectors are aligned, indicates 
that a standard, high Re number, second-moment closure gives 
reasonable predictions of a mildly 3-D boundary layer on a 
rotating cylinder. Since our interest was primarily in the flows 
with simultaneously imposed high acceleration, when the wall 
functions become inapplicable, a verification of our low Re 
number model in the flow along a rotating cylinder appeared 
essential for gaining a confidence in the model applicability in 
a complex flow with simultaneous transverse shear and 
acceleration. 

Figure 6 compares the streamwise and spanwise mean 
velocity profiles at a number of successive positions along the 
cylinder with the experimental data of Lohmann (1976). The 
agreement is generally satisfactory, though for the Lohmann 
flow our predictions indicate a conspicuous change in the 
curvature of the U profile at the edge of the inner (spanwise) 
boundary layer associated with the transverse velocity, which 
propagates radially outward with the growth of the inner layer 
along the cylinder and, eventually, disappears. The phenome- 
non seems to be related to the effect of the transverse 
shear, which initially tends to reduce the axial velocity close to 
the wall. It is interesting that the agreement with the data of 
Bissonnette and Mellor (not shown here) is generally better, 
possibly because of smaller W, JUe, whereas the predictions of 
transverse velocity are in better agreement with the experiments 
of Lohmann. The effect of the wall movement on the mean 
velocity is also reflected in the logarithmic plots (not shown 
here) of the mean velocity vector, Q = ~ U 2 +  ( W . -  HI) 2 
(normalized with the wall shear stress vector), which depart 
slightly from the experimental results for both cases. It is 
interesting that Lohmann's data for all stations comply with 
the standard logarithmic slope, indicating a good validity of 
the law of the wall, whereas Bissonnette and Mellor's data show 
a visible departure (though opposite from our predictions), 
which they attributed to the curvature effects. The latter flow 
along the 127mm-thick cylinder could be more prone to the 
curvature effects than Lohmann's flow along the twice thicker 
cylinder with diameter of 260mm. However, excellent 
agreements of results of both authors, with the standard 
logarithmic law for the first measured stations at the 

- ] F ~ / u a p = 1 , 4 r r  , , . 
- =- : =- X = - 6 ( ¢ ~ 1  

< ~  - "- .: .: X=  3(~m.~ o • 
- e : : X , ,  1£i=n.1 

. 5  - = = = X , ,  a ( i ~ ) ,  d 
- = = = X , , l O E i ~ J  / 
- -- : : x , , r 3 £ i ~ . , I  ¥ 

-- : : X l l S ( i r ~ . )  

o. , , , . , , . L  
0 0 0 0 0 0 0 .2 .4 .6 .8 1.0 

U/Ue 

1.0 ! , 

,, , i  C , W ~ / u e = r . 4 r  r 
< ~  - , ,, c , : -- -- Xffi r ( i ~ )  

_- ~" . , l cc ,' a .t .t Z =  3 ( i ~ )  

- , . '  q~ ~ = = = X - a ( ~ . }  
- = , ~p c = = = X= lO~¢~. )  

.5 - = ' t ~, I i "~ : : : x = r s £ ~ t . )  
_ ,,= ,' =.  "~ : : : x = r 6 ( ¢ ~ . )  
- e . 
- e . - - 

0 0 0 0 0 0 0 .2 .4 .6 .8 1.0 

w / r f w  

Figure 6 Axial and transverse mean velocity profiles along the f low 
on a rotating cylinder at constant pressure 

Transverse shear and streamwise acceleration: K. Hanjafid et aL 

stationary cylinders, and inconsistent discrepancies between the 
two sets of mean velocities along the rotating cylinder, do not 
support the argument of curvature effects, but rather hint at 
some inaccuracies in measurements in the near-wall region. 

The predictions of the mean flow features are further 
illustrated in the next two figures. The variations of the total 
wall friction factors along the flow for the two considered cases 
(Figure 7) show a sudden rise at the position where the flow 
encounters the moving cylinder and a subsequent adjustment 
to an almost constant value corresponding to the self-similar 
flow on a rotating cylinder. As seen, for Lohmann's case the 
predicted friction is somewhat higher than the experimental 
one in the initial region, whereas the agreement for the 
Bissonnette and Mellor flow is generally satisfactory at all 
stations. A similar quality of agreement is obtained for the angle 
between the wall shear stress vector and the free stream 
velocity, as shown in Figure 8. 

The influence of a sudden imposition of the transverse shear 
on the turbulence structure is illustrated in the next set of 
figures. The evolution of normal stresses (Figure 9) is 
reproduced very well at all stations and for both sets of data, 
as illustrated by the profiles of the root mean square (rms) of 
velocity fluctuations fi, ~ and ~ (here only Lohmann's flow is 
shown). The agreement is very good at most stations, though 
unsatisfactory at some. It should be noted that the agreements 
and disagreements are not consistent for the two sets of 
experimental data, indicating possible defects in the hot-wire 
measurements at some stations in both experiments, especially 
close to the wall. The model reproduced well the increase in 
the spanwise normal stress components w --z, which exceeds the 
other two in the near-wall region as a consequence of a large 
energy input due to the transverse shear. 

Good agreement has been obtained also for the ~'6 shear 
stress components for both sets of data (also shown in Figure 
9) as well as for ~ for the Bissonnette and Mellor flow (not 
shown), in spite of the fact that these measurements are prone 
to inaccuracies when measured with a slanted, hot wire at a 
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45 ° angle with the wall. In fact, our predictions agree 
particularly well with the results evaluated from the integration 
of the momentum equations. However, for Lohmann's flow at 
stations further downstream, the agreement is not satisfactory. 
Even worse is the agreement for the ~ component, particularly 
for Lohmann's flow. The same quality of predictions was 
reported by Gibson and Younis (1986), and Higuchi and 
Rubesin (1979). The experiments show high levels of this shear 
stress component (higher than the other two), which remains 
almost constant over a progressively larger portion of the 
boundary layer thickness as the fluid flows along the moving 
cylinder. High values of ~ close to the wall are expected, since 
this is the only stress component to which production both 
dominating velocity gradients, ~U/~y and OWlOy contribute. It 
is surprising that the high stress level persists at such large 
distances from the wall. Our computations indeed yielded very 
high peaks close to the wall, but considerably smaller values 
away from the wall. The same discrepancies were reported by 
Gibson and Younis (1986), Higuchi and Rubesin (1979) and 
Shima (1991), although different models have been employed. 
Of course, the high Re number models could not reproduce the 
high peaks close to the wall. 

The measurements used here for comparison were performed 
with single hot wires perpendicular to the flow and large errors 
are not expected. Since the symptoms are similar in both sets 
of data, though more pronounced in the Lohmann flow, where 
the ratio Ww/Ue is higher, it seems that a high intensity of 
further downstream is a characteristic feature of the considered 
flow, which none of the applied models is able to rep_soduce. 
The production ofW~, Pw~, is dominated by the terms v~W/Oy 
and, to some extent, by ~OW/Ox, which are both accurately 
predicted as seen from the profiles of v --7, ~ and W. Similarly, 
Pw, is dominated by -fi-~OW/Oy and ~'~OU/Oy, which again are 
well reproduced. The dissipation components e~, and ~ are 
small at the considered Re numbers. Hence, the main source 
of deficiency should be sought in inadequacies of the simple 
model of the pressure-straining process, *q,  given by Equations 
5-8. The region in question is sufficiently far from the wall that 
the low Re number and near-wall modifications of coefficients 
should have no effect. Because the models of Oij, 1 and of (l)ij,2 
(although very simple) are given in invariant form, they should 
not be dependent on the flow orientation, provided, of course, 
that the model is sufficiently general. The major deficiency 
probably lies in the wall echo models, Equations 7 and 8, which 
should simulate a damping of the stress redistribution process 
(I)~j due to the pressure reflection from the wall. The model 
employed yields zero values of ~'~ for the ~-fi component. 
Although this shear stress does not involve the fluctuations 
normal to the wall, it does not seem plausible that it will remain 
unaffected by the wall pressure reflection. It should be recalled 
that Equations 7 and 8 were derived for 2-D flows parallel to 
the wall and they have already been shown to yield erroneous 
effects in cases in which the dominant flow direction is normal 
to the wall, as in impinging jets. Because of a strong dependence 
on the local normal distance from the nearest wall, these 
expressions are also likely to fail in 3-D situations, even if the 
major flow direction remains parallel to the wall. No attempt 
was made to modify these expressions for the three- 
dimensionality effects because they have been regarded as the 
weakest part of the pressure-strain model and ought to be 
replaced by a more general model that should be void of the 
local wall distance. It should be noted that deficiencies in 
accurately predicting ~'~ do not seem to affect the mean flow 
properties much nor the intensities of turbulence fluctuations, 
as shown earlier. 

A blowup of all stress components in the wall vicinity is 
shown in log-log plots in Figure 10. No experimental data so 
close to the wall are available, but the results show good 

compliance with the theoretical slopes, indicating that the 
model satisfies the wall asymptotes. 

Figure 11 compares the computed structure parameter 
a = x / ~  + W~2/2k with the experimental results of Lohmann. 
The large scatter, particularly at x/A = 8, which originated 
from scatter of measured ~-~ and W~, leaves little opportunity 
for drawing a plausible conclusion on the evolution of the 
structure parameter a. The computations produced at all 
stations more or less constant values, a ~ 0.15~).17, in close 
agreement with the value found in a 2-D wall boundary layer. 
Lohmann's results for individual stress components at 
x/A = 3,which seem to be most consistent, yield a ~ 0.135 up to 
y/A ~ 0.6, whereas for three other stations a is somewhat 
higher. The experimental data of Bissonnette and Mellor show 
similar scatter, particularly in the outer region, whereas in the 
inner wall zone, the parameter a drops to about 0.11 at the 
first station X/A = 4, but increases systematically as the flow 
progresses downstream. The computations reproduce the 
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trend, but within a much narrower range--from 0.164).18. 
(Bissonnette and Mellor obtained ~-~ and W6 also from the 
integration of the mean momentum equations. These results 
give a at all stations between 0.135 and 0.15.) This outcome is 
in contradiction with the findings in pressure-skewed 3-D 
boundary layers (Bradshaw and Pontikos 1985, Sendstad and 
Moin 1991), where a was found to decrease. Indeed, in the 
present cases the flow is strongly dominated by the imposed 
shear and conclusions drawn in the pressure-skewed 3-D 
boundary layer do not seem to be applicable. 

An interesting indication of the turbulence response is the 
evolution of the stress components along the flow. Figure 12 
compares the values of normal stresses at three distances from 
the wall for Ww/Ue = 1.8. Following Bissonnette and Mellor, 
the results were plotted versus the nondimensional axial 
distance and normalized with the averaged boundary layer 
thickness ~. The agreement can be regarded as satisfactory (still 
better agreement is achieved by Ww/U, = 0.93), considering 
that the presented results also involve the estimate of the 
boundary layer thickness. As mentioned before, the rise of 
spanwise component follows immediately after encountering 
the moving wall. Contrary to expectations, two other normal 
stress components react immediately, in spite of the fact that 
they receive additional energy not from the mean motion, but 
from the spanwise component through the pressure redistribu- 
tion action. A satisfactory reproduction of the response of 
turbulent stresses on a rapid change of the mean rate of strain 
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is a good indication of the appropriate choice of the time scale 
in the model of pressure-strain term ~ij.2 and is of vital 
importance for the possible extrapolation of the models 
to predict nonequilibrium and fast-evolving flows. 

Shea r -d r i ven ,  t h r e e - d i m e n s i o n a l ,  acce le ra t i ng  
b o u n d a r y  layer  

We turn now to the flow in which both effects are 
simultaneously present. Selected was the geometry investigated 
experimentally by Aust et al. (1992) in which, after 0.5m of a 
constant-pressure entrance length, a very severe acceleration 
corresponding to the 2-D acceleration parameter K = 1.9 
x 10-5 was imposed, together with a strong transverse strain, 

with the wall to the initial free stream velocity ratio 
Ww/Uel = 3.2 (W w = 2.0 and Uei = 0.623m/s). This ratio 
decreases progressively as the flow accelerates (Figure 13). The 
acceleration parameter based on the vector sum of the wall 
velocity and free stream velocity K* can be expressed in terms 
of K for the 2-D flow as 

(m? = 

g 2 dx \ g e J  1 ~t_ \ U e } l  J 

Its initial value is K* = 5 x 10-7, but it increases progressively 
and further downstream approaches the 2-D value very fast, 
as shown in Figure 13. 

The only available experimental data are for the streamwise 
mean velocity and its fluctuations at several locations along 
the flow. The flow was computed by simulating actual 
geometry, moving wall velocity and initial free stream velocity. 
The initial profiles at the onset of transverse shear and 
acceleration were obtained by letting a thin boundary layer 
develop 0.5m along the wall at constant pressure, which--apart  
from the free stream turbulence--was believed to be a close 
simulation of the experimental setup. In order to maintain 
turbulence at such a small free stream velocity of 0.623m/s, the 
thickness of the boundary layer had to be higher than recorded 
by Aust et al. (1992). Figure 14a shows very good 
agreement of computed mean velocities with experiments. As 
the flow accelerates, at first slowly and then more rapidly, the 
boundary layer becomes thinner with very steep gradients close 
to the wall, whereas the outer flow retains almost uniform U 
velocity profiles. A comparison with the 2-D accelerating flow 
at the same K (Ww = 0) indicates a hardly discernible difference 
in U profiles, particularly further downstream when the ratio 
Ww/Ue becomes small. However, the acceleration suppresses 
the growth of the spanwise boundary layer, which remains 
almost constant at some length and then begins to decrease. 
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Figure 13 Ww/Ue and K* variation along the 3-D, shear-driven, 
accelerating flow 

278 Int. J. Heat and Fluid Flow, Vol. 15, No. 4, August  1994 



15 

10 

5 

0 

0 

0 

0 

/ , .~  -~'-*--*- X=t.oo[m3 
- ~ . . . . ~  - a -  a -  ~ -  X = 1 . Z S ( r r O  
- • - - ~ - B - - B -  } [ = I  5 0 ( r G )  - , + - + + :  

I I : + F + l l  I i I I i l l l i  I I I I i t l +  

1 0  y +  1 0 0  t O 0 0  

80 

X=O.75~m) 
. . . . . . . . . . .  X=l .OO(m) 
. . . . .  X=1.25(rrQ 

X=1.50(m)  

o 

o .5 1 . o ~ ( m / s ?  .5 2.0 

Figure 14 Axial and transverse mean velocity profiles along the 
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Transverse shear and streamwise acceleration: K. Hanjali& et al. 

This is best seen in the profiles of the spanwise velocity W at 
the corresponding locations. The initial tendency of increase in 
W in the outer region of the boundary layer is suppressed as 
the flow progresses and this trend is soon reversed due to the 
acceleration. The profiles are distinctly different from those in 
Figure 6 for constant-pressure flow along a rotating cylinder. 

The evolution of the turbulence field is illustrated in Figure 
15 where all three components of the velocity fluctuations (rms) 
and shear stresses are given. Our computations of the 
streamwise fluctuations did not give satisfactory agreement 
with measurements of Aust et al. (1992) in the initial portion of 
the convergent duct. The discrepancies could have been caused 
by various factors. The experiments were performed by 
movement of a continuous belt, by which the moving wall was 
simulated. Slight, but unavoidable bending of the belt, sensitive 
to the speed and environmental conditions, as well as a bulge 
at the place where the two ends of the belt were glued, 
prevented measurements very close to the belt. For these 
reasons, it was difficult to keep the distance of the measuring 
points from the belt constant during the experiment and to 
measure this distance very accurately. Besides, because of the 
pronounced flow nonequilibrium, the initial turbulence 
evolution is sensitive to the oncoming turbulence structure. 
Initial profiles of turbulence level and its scale (initial profiles 
of e) were sought by trial and error, but we were not able to 
reproduce the same initial conditions as measured by Aust et 
al. However, it appeared that further downstream the initial 
conditions were not so important because of strong dominance 
of both extra strain rates. The computations show an almost 
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constant relative turbulence level in the outer region of around 
1 percent, but a gradual decrease in peak values close to the 
wall. The highest damping due to the acceleration is exerted 
on the f component, which decays fast irrespective of the high 
shear close to the wall. However, the spanwise component 
increases steeply in the initial portion of the flow (note the same 
scale) due to a high production from the moving wal l - -  
preferential feeding due to the transverse shear--but  soon 
begins to decrease as the acceleration effects increase. In fact, 
in the initial portion of the 3-D flow, the normal stresses tend 
to follow the pattern found in constant-pressure flow along the 
rotating cylinder, but preferential damping of the ~ component 
due to the acceleration, and a preferential feeding of energy 
into the # component due to the transverse shear, increase the 
anisotropy of the turbulent stress field and significantly change 
the turbulence structure. Further downstream all components 
decay as the acceleration progressively dominates the 
transverse shear, but its initial anisotropy pertains for long. The 
major difference in comparison with a 2-D accelerating 
boundary layer is that t~ and ~ (the latter receiving energy 
mainly through the pressure-straining action) are affected 
earlier by the acceleration than the # component, which is 
directly generated by the transverse shear due to the wall 
movement. 

Shear stress components show a similar behavior. By far the 
largest increase is in ~-~, as expected, whereas ~ shows only 
a slight increase, contrary to the flow at constant pressure. In 
view of the behavior of u and v fluctuations described earlier, 
which are both suppressed by the acceleration, a strong and 
steady decay of~-~ is understandable. For comparison, the total 
shear stress components (viscous plus turbulent) % and z~ are 
also given (note different scales) illustrating a rapid diminishing 
of turbulent contribution along the flow, particularly in the ~-~ 
component. 

A preferential damping of v fluctuations and a preferential 
production of w is best illustrated in Figure 16, where the stress 
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Figure 16 Near-wall behavior of turbulence intensities and shear 
stress components in the 3-D, shear-driven, accelerating flow 

components are presented in the log-log diagram. The 
theoretical slope of all components is satisfied as in previous 
cases, but the magnitudes have changed notably. The diagram 
confirms the often disputed fact that the external effects, if 
sufficiently strong, penetrate very close to the wall and 
invalidate the conventional scaling with the inner velocity and 
length scales U, and v / U ,  respectively. 

Figure 17 shows the structure parameter a, which initially 
exhibits a visible diminishing in comparison with typical values 
found earlier in the shear-driven flows at constant pressure, 
probably because of a higher W w / U e  ratio. However, as the 
acceleration progresses, the structure parameter increases and 
exceeds the value typical for 2-D constant-pressure boundary 
layers, indicating a faster decay of the turbulence energy than 
of the shear stress in the plane parallel to the wall. 

An illustrative resume of the dynamics of turbulence response 
is given in Figure 18, which shows the evolution of the 
maximum values of all stress components along the flow. All 
components containing the w fluctuations show a sudden jump 
on encountering the moving wall, particularly w -m and W~, 
because of a direct effect of production due to spanwise shear, 
whereas other stress components show a strong decay 
immediately after the imposition of the flow acceleration. 
However, the ~ component continues to receive ener$_,v not 
only by direct production, - 5 - ~ ( ( ~ U / ~ y ) ,  but also from w ~ due 
to the pressure-redistributing action. After a sharp decrease 
immediately after the onset of acceleration, the u component 
remains more or less constant and even begins to increase, to 
be suppressed at the end when the feeding from the w 
component through the pressure-strain interaction becomes 
insufficient and the flow eventually laminarizes. Figure 18 
shows that a full disappearance of turbulence occurs at 
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x ~ 1.6m (i.e., very close to the end of the convergent section 
of the channel) and at x = 1.75m, indicating that u --7 shows a 
strong persistence until a very severe acceleration is achieved. 

The last figure illustrates the evolution of integral flow 
parameters along the flow. Figure 19 shows the variation of 
thetotal  friction factor C I 2 / ~ 2  + 2 2 2 = T=/(U e + Ww), as well as 
of each component Cfx 2zx/U ~ and Csz = 2zz/W2. All 
factors increase sharply at the onset of the moving wall. It is 
interesting to note that Cyx retains an almost constant value 
along the whole flow, which is substantially larger than the 
initial value in a 2-D turbulent boundary layer prior to 
transverse shear and acceleration. A similar behavior is 
exhibited by Cfz, which jumps from zero to a peak value when 
encountering the wall motion, drops slightly and remains 
almost constant over a large portion of the flow length, but 
increases sharply at the end of the channel. Since this factor is 
normalized with Ww, which remains constant, this behavior 
indicates that ~, remains constant for a long period and 
increases steeply only at the end of the convergent channel. The 
total friction factor also exhibits a sudden increase, but 
diminishes steadily along the flow, approaching a constant 
value at the end, which is considerably higher than expected 
in a laminarized flow. That the flow has eventually become 
laminarlike, in spite of a substantial turbulence level, is 
illustrated by the shape parameter H, based on U velocity 
(Figure 19). Its steady increase up to a value of about 2 is the 
best indication of the laminarlike form of the mean velocity 
profile, This seemingly contradictory conclusion that the shape 
parameter has approached a value typical for laminar flow, 
while the maximum values of turbulent stresses, as well as the 
wall friction factor, still indicate a substantial amount of 
turbulence, can be explained by the fact that the turbulence is 
concentrated in a relatively thin layer in the buffer zone, which 
does not affect the mixing in other parts of the flow cross 
section. An expectation that both parameters H and Cy will 
behave as in the 2-D accelerating flow, provided K* becomes 
large enough (Figure 5), was not justified, since the imposed 
wall shear delays laminarization irrespective of the value of K. 

Conclusions 

A modified, second-moment closure model with incorporated 
low Re number and wall vicinity effects, verified in several 
simpler flows including 2-D sink flows and constant-pressure, 
sbear-induced, 3-D boundary layers, was used to study the 
response of an initially 2-D turbulent boundary layer on a flat 
plate, subjected simultaneously to imposed transverse shear 
and to a streamwise acceleration. The log-log plots of all stress 

Transverse shear and streamwise acceleration: K. Hanjali~ et al. 

components in the near-wall region in all three flows considered 
follow the theoretical slope. For  the 2-D sink flows, the 
computed intensities agreed well with DNS data for all 
components up to the wall except for a slight discrepancy in 
w -'7. The predicted behavior can be regarded as proof that the 
model satisfies the two-component turbulence limit, whereas 
the predicted laminarization indicates that the model satisfies 
the limit of vanishing Re,. The computed streamwise mean 
velocity profiles at several locations in the 3-D flow with 
acceleration showed excellent agreement with the available 
measurements. Although only a partial verification of the 
predicted turbulence properties was possible because of lack of 
experimental data, it is believed that the model reproduces well 
the combined effects of high acceleration and of strong, 
shear-induced three-dimensionality. 

These two opposing external effects exhibit directionally 
preferential influence on the turbulent stress field. The damping 
effect due to the acceleration is felt most in the v -'7 component 
(and, consequently, on shear stresses ~-~ and ~"~), whereas the 
transverse shear--and the consequent longitudinal vortic- 
ity---enhances the production of the spanwise velocity 
fluctuations w - 7  and the shear stresses W~ and ~-~. These selective 
effects cause the turbulence structure to alter and impose a 
relative increase in stress anisotropy in spite of a progressive 
damping of the turbulence. The net effect in the considered 
configuration is a persistence of turbulence--although at a low 
level--until almost the end of the convergent channel, whej;e 
the acceleration becomes extremely severe. In spite of 
turbulence persistence, the flow shows obvious signs of a steady 
tendency toward laminarization, as anticipated for such a high 
K parameter. This is particularly visible in the behavior of the 
shape parameter H based on the U component, which shows 
a steady increase and approaches the laminarlike level long 
before the turbulence dies out. However, a continuous 
secondary turbulence production due to the transverse shear 
maintains the friction factors along the whole considered flow 
length at a level that is typical for turbulent flows. 

This feature is of significant importance for industrial 
applications and may have important implications on heat and 
mass transfer. Although the imposed acceleration is very strong 
and at x ~ 1.2m, K* already exceeds the critical value for 2-D 
flows of 3.2 x 10 -6, a high turbulence intensity, concentrated 
in the w component (produced by the moving wall in the front 
portion of the channel where acceleration is still weak and the 
normal gradient of W is very strong), is being convected fast 
downstream and, in spite of damping, retains a substantial level, 
also maintaining the u component up to the very end of the 
channel. Hence, a judgment of the turbulence level based on 
the measurement of u fluctuations may lead to erroneous 
conclusions. 

Although the evolution of the stress field, presented in 
Figures, may not be fully trustworthy because of a lack of 
verification with the experiments, a satisfactory prediction of 
the turbulence response to separate actions of acceleration and 
transverse shear give reason to believe that the presented results 
could not be far wrong. The results also indicate that care 
should be taken to design properly the flow passage with a 
transverse moving wall if early laminarization is to be achieved. 
In spite of the failure to reproduce the behavior of ~ further 
downstream, the relatively successful predictions of all other 
stress components in, for example, a constant-pressure, 3-D 
boundary layer along a rotating cylinder, can be regarded as 
an argument in favor of the often questioned ability of 
turbulence models to account for 3-D effects. These predictions 
fulfill the expectations of model developers that three- 
dimensionality per se should not invoke severe deviations if the 
model was derived in a general coordinate-frame-invariant 
form and provided that the flow structure is reasonably similar 
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to that in an analogous 2-D situation. Deficiencies, such as the 
mentioned failure to reproduce the wall echo in impinging 
flows, originate usually from the noninvariant,  direction- 
dependent parts of the model  and will appear under some 
circumstances irrespective of whether the flow is 2-D or 3-D. 

Directional preferences on the stress field of the two imposed 
extra strain rates, which extend deeply into the viscous wall 
region, clearly indicate that only turbulence models that solve 
differential transport equations for each stress component  up 
to the wall can be expected to reproduce the flow physics 
adequately. 
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